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Abstract

The logic of Bringing-it-About was introduced by Elgesem to formalise the notions
of agency and capability. It contains two families of modalities indexed by agents,
the first one expressing what an agent brings about (does), and the second express-
ing what she can bring about (can do). We first introduce a new neighbourhood
semantics, defined in terms of bi-neighbourhood models for this logic, which is more
suited for countermodel construction than the semantics defined in the literature.
We then introduce a hypersequent calculus for this logic, which leads to a decision
procedure allowing for a practical countermodel extraction. We finally extend both
the semantics and the calculus to a coalitional version of Elgesem logic proposed by
Troquard.

Keywords: Logic of agency, logic of ability, coalition logic, sequent calculus,
countermodel extraction, decision procedure.

1 Introduction
The logic of Bringing-It-About was originally proposed by Elgesem [5], and pro-
vides one possible formalisation of agents’ actions in terms of their results: that
an agent “does something” is interpreted as the fact that the agent brings about
something, for instance “John does a bank transfer” is interpreted as “John does
that the bank transfer is done”. The logical system proposed by Elgesem con-
tains two modalities indexed by agents Ei and Ci (this is not his original nota-
tion), the former expressing the agentive modality of bringing-it-about, and the
latter expressing capability, roughly speaking Elucy BankTransfer means that
Lucy makes a bank transfer, whereas Clucy BankTransfer means that Lucy can
make a bank transfer. Elgesem’s logic is then intended to capture the effect of
the action “what is brought about” and the agency relation, abstracting away
from any temporal and game-theoretic aspect. In this way it provides a terse
formalism, that has become a standard, quite simpler than other formalisms
such as STIT-logic [2,8]. Elgesem’s logic is well-suited for expressing notions of
responsibility and formalising notions of control, power, and delegation, for in-
stance: “Sara prevents Lucy from making a bank transfer” will be captured just

1 {tiziano.dalmonte,charles.grellois,nicola.olivetti}@lis-lab.fr. This work has been partially
supported by the ANR project TICAMORE ANR-16-CE91-0002-01.
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by Esara ¬Elucy BankTransfer ; moreover it can be easily combined with deontic
modalities in order to express e.g. that an agent is obliged to do something and
so on.

Elgesem proposed an axiomatisation of his logic and a (almost matching)
semantics based on selection function models. Notice that the intended notion
of capability is rather weak, the only characterising axioms are that (i) agency
implies capability EiA → CiA and (ii) ¬Ci>, the latter expressing that an
agent i is not capable of doing anything that is always true, whence also ¬Ei>:
an agent cannot do anything that will happen anyway, no matter her own
involvement and responsibility.

Elgesem’s logic was further studied by Governatori and Rotolo [7], who
proposed an alternative semantics in terms of neighbourhood models. In their
semantics, models contain two neighbourhood functions corresponding to the
two operators Ei and Ci assigning for each agent i the propositions (identified
with their truth sets) that the agent i brings/can bring about. They also
proved that Elgesem’s semantics entails the validity of the further axiom ¬Ci⊥
meaning that an agent cannot bring about something which is contradictory.

Elgesem’s logic deals with actions of a single agent, who might be either
a human individual, or an institution, or a group conceived as an indivisible
entity. A natural extension of this logic is to handle groups or coalitions that act
jointly to bring about an action. This has been proposed by Troquard [11] who
has developed an extension of Elgesem logic to handle “coalitions”: individuals
may gather in coalitions to bring about a joint action. In a joint action, each
participant must be involved, so that the logic rejects coalition monotonicity:
EgA→ Eg′A whenever g ⊆ g′ is not considered as valid. Troquard provided a
computational analysis of his logic and determined its complexity by providing
a decision procedure for his logic, whence for Elgesem’s.

While the semantics of Elgesem logic, as well as its coalitional extension
are well-understood, its proof-theory is mainly unexplored: the only known
proof system for this logic was proposed by Lellmann [9]. In particular, no
proof system connecting the syntax and the semantics is known. By this we
mean that there is no proof system so far that permits the construction of
countermodels of non-valid formulas. Moreover, no proof system is known at
all for the coalitional extension. In particular, the decision procedure developed
by Troquard [11] computes a reduction of a question about validity in his
coalition logic to a set of SAT problems. This is in the spirit of the approach
of Vardi [12] and Giunchiglia et al. [6] for non-normal modal logics. But this
algorithms based on SAT-reduction does not provide neither derivations, nor
countermodels.

This is precisely the purpose of this work. We take our move by redefining
the semantics of Elgesem logic: we consider bi-neighbourhood models, a variant
of neighbourhood models defined in [7]. Like the models in [7], our models
contain, for each agent i, two neighbourhood functions corresponding to the
two operators Ei and Ci. But contrary to the neighbourhood models of [7],
these functions assign to each world a set of pairs of neighbourhoods (α, β).
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Although it would be pretentious to suggest here a new semantics of actions,
we can suggest some intuitive interpretations of the pairs of neighbourhoods
(α, β): given a proposition A representing the result of an action of an agent
i, the two components (α, β) of the pairs can be understood respectively as
specifying independently a set of situations α enabling i to bring about A and
β preventing i from doing A. An alternative interpretation is as follows: since
A must be true in all worlds (situations) in α and false in all worlds in β, the
former can also be thought as a set of possible outcomes of A and the latter
as a set of impossible outcomes of A. 2 In this second interpretation, each pair
(α, β) can also be thought of as expressing a lower and an upper approximation
of propositions that the agent brings/can bring about given a proposition.

Note that a bi-neighbourhood model can be transformed into a standard
neighbourhood model of [7], and conversely.

No matter its intuitive interpretation, the bi-neighbourhood semantics has
a clear technical advantage as it makes easier to compute countermodels of
non-valid formulas than the standard neighbourhood semantics, by avoiding
the exact determination of the truth sets of formulas.

We next move to proof theory by proposing a hypersequent calculus. A
hypersequent can be thought of as a disjunction of ordinary sequents. While
the hypersequent structure is not needed to obtain a complete calculus (as
witnessed by [9] itself), the use of hypersequents allows us to define a calculus
with invertible rules, as a difference with the one in [9]. The main advantage
is that from one failed hypersequent occurring as a leaf of one derivation tree,
a countermodel can directly be extracted in the bi-neighbourhood semantic of
the formula under verification. In this sense, our calculus provides not only
a decision procedure for this logic, but also the first practical procedure to
compute countermodels. Observe that it is not possible to compute directly
countermodels by ordinary sequent calculi: because the rules are not invertible,
the fact that one specific derivation fails, does not mean that the sequent is
unprovable, so that in order to build a countermodel (for a non-valid formula),
all possible derivations must be attempted and inspected. Another syntactic
feature of our calculi is that hypersequents contain additional structural con-
structs, the blocks, which are necessary for countermodel construction, but also
to capture the logic in a clean and modular way, reflecting its axiomatisation.

The hypersequent calculus has nonetheless good proof-theoretic properties,
as it enjoys a syntactic proof of cut elimination, from which also follows its com-
pleteness with respect to the axiomatisation. We then turn to the coalitional
version of Elgesem’s logic proposed by Troquard [11]: we are able to extend
both the bi-neighbourhood semantics and the calculus to this setting, needing
only to add the rules for handling the empty coalition and coalition fusion. Our
calculus then provides a decision procedure for Troquard coalitional logic, with
derivations and countermodels.

2 We are grateful to one reviewer for suggesting this latter interpretation.
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REE
A↔ B

EiA↔ EiB
REC

A↔ B
CiA↔ CiB

CE EiA ∧ EiB → Ei(A ∧B) QC ¬Ci>
TE EiA→ A PC ¬Ci⊥
IntEC EiA→ CiA

Fig. 1. Modal axioms and rules of Elgesem’s logic ELG.

2 Elgesem’s logic and bi-neighbourhood semantics
In this section, we present Elgesem’s agency and ability logic, which we denote
by ELG. Then we define the bi-neighbourhood models for this logic.

Let A = {a, b, c, ...} be a set of agents. The logic ELG is defined on a
propositional language LElg containing, for every i ∈ A, two unary modalities
Ei and Ci, respectively of “agency” and “ability”. The formulas of LElg are
defined by the following grammar:

A := p | ⊥ | > | ¬A | A ∧B | A ∨B | A→ B | EiA | CiA,
where EiA and CiA are respectively read as “the agent i brings it about that
A”, and “the agent i is capable of realising A”. The logic ELG is defined by
extending classical propositional logic (formulated in language LElg) with the
modal axioms and rules in Fig. 1. 3

Notice that ¬Ei⊥ and ¬Ei> are derivable in ELG. By contrast, the axioms
C and T hold only for the modality E, meaning respectively that if an agent
realises two things, then she realises both, and that if A is brought about by
some agent, then it is actually the case that A.

Semantic characterisations of the logic ELG are provided by Elgesem [5] in
terms of selection function models and by Governatori and Rotolo [7] in terms
of neighbourhood models, the latter having separate neighbourhood functions
for the modalities E and C. Here we propose an alternative semantics based
on bi-neighbourhood models [4]. We explain the advantages of this alternative
semantics just after its definition.

Definition 2.1 A bi-neighbourhood model for ELG is a tuple M =
〈W,N E

i ,NC
i ,V〉, where W is a non-empty set, V is a valuation function, and

for each agent i, N E
i and NC

i are two bi-neighbourhood functions W −→
P(P(W)× P(W)) satisfying the following conditions:

(CE) If (α, β), (γ, δ) ∈ N E
i (w), then (α ∩ γ, β ∪ δ) ∈ N E

i (w).
(TE) If (α, β) ∈ N E

i (w), then w ∈ α.
(QC) If (α, β) ∈ NC

i (w), then β 6= ∅.
(PC) If (α, β) ∈ NC

i (w), then α 6= ∅.
(IntEC) N E

i (w) ⊆ NC
i (w).

3 A variant of Elgesem’s logic not containing axiom PC is considered in [7,9]. All results
presented in this work can be extended to this variant just by dropping the corresponding
condition in the bi-neighbourhood semantics and the corresponding rule in the calculus.
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The forcing relation 
 is defined as usual for atomic formulas and boolean
connectives, whereas for E- and C-formulas it is defined as follows:
M, w 
 EiA iff there is (α, β) ∈ N E

i (w) s.t.
for all v ∈ α,M, v 
 A, and for all u ∈ β,M, u 6
 A.

M, w 
 CiA iff there is (α, β) ∈ NC
i (w) s.t.

for all v ∈ α,M, v 
 A, and for all u ∈ β,M, u 6
 A.

Notice that if we denote by JAK the set {v | M, v 
 A}, i.e., the truth set
of A, the above clauses can be rewritten asM, w 
 EiA if and only if there is
(α, β) ∈ N E

i (w) s.t. α ⊆ JAK and β ⊆ J¬AK, and similarly for C-formulas. As
usual, we omit to specify the modelM when it is clear from context, and then
we simply write w 
 A.

The main reason for considering bi-neighbourhood semantics is that is offers
a much easier and natural way to extract countermodels from failed proofs. To
see this, in the standard neighbourhood semantics, to make w satisfy EiA, ex-
actly the truth set of Amust belong toN E

i (w), whereas in the bi-neighbourhood
semantics it is sufficient to find a pair (α, β) such that α ⊆ JAK and β ⊆ J¬AK.
Observe that this condition can be rewritten as α ⊆ JAK ⊆ W \ β: in this way
the pair (α, β) can be thought of as specifying a lower and upper approxima-
tion of the truth set of A. The fact that the exact determination of truth sets
is not needed in the bi-neighbourhood semantics makes countermodels extrac-
tion from failed proofs substantially easier than in the standard semantics: a
failed proof only specifies “partial” information, from which one can directly
compute bi-neighbourhood pairs, but not exact truth-sets. For this reason bi-
neighbourhood semantics is more natural for direct countermodel extraction
than the standard one.

As mentioned in the introduction, bi-neighbourhood semantics can also
have some intuitive meaning in terms of agency, we have suggested two possible
interpretations: a bi-neighbourhood pair can be interpreted as a specification
of enabling and preventing conditions for the realisation of actions, or as a
set of possible/impossible outcomes of an action. In both interpretations, the
conditions (PC) and (QC), i.e., α 6= ∅ and β 6= ∅ have a natural meaning: the
former imposes that an action must be enabled or possible (non-empty possible
outcomes), so that a contradiction cannot be realised; the latter imposes that
an action must be preventable (non-empty impossible outcomes), so that a
tautology cannot be realised.

Notice also that, because of the validity of ¬Ei> and of the axiom TE,
formulas of the form EiA are never valid in models for ELG, this is the semantic
counterpart of the idea that actions can be always prevented.

Theorem 2.2 (Characterisation) A is derivable in ELG if and only if it is
valid in all bi-neighbourhood models for ELG.

Proof. The proof of soundness is easy and amounts to showing that all axioms
are valid and all rules are validity-preserving. Completeness can be proved by
the canonical model construction as it is done in [4] for classical non-normal
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modal logics. Let us call ELG-maximal any set Φ of formulas of LElg such
that Φ 6`ELG ⊥ and if A 6∈ Φ, then Φ ∪ {A} `ELG ⊥. We denote by ↑A the
class of ELG-maximal sets containing A, and we define the canonical model
for ELG as the tuple 〈W,N E

i ,NC
i ,V〉, where W is the class of maximal sets,

V (p) = {Φ ∈ W | p ∈ Φ}, and for every i ∈ A and X ∈ {E,C}, NX
i (Φ) =

{(↑A,W\ ↑A) | XiA ∈ Φ}. We can prove that Φ 
 A if and only if A ∈ Φ,
(truth lemma, cf. [4]) and that the canonical model is a bi-neighbourhood
model for ELG. We show as an example that it satisfies the conditions (QC)
and (IntEC): (QC) Assume (↑A,W\ ↑A) ∈ NC

i (Φ). Then there is CiB ∈ Φ
such that ↑B =↑A, whence ` B ↔ A. If ↑A = W, then ` A ↔ >. Thus by
REC, ` CiB ↔ Ci>, and since Φ is closed under derivation, Ci> ∈ Φ, against
the fact that ¬Ci> ∈ Φ and Φ is ELG-consistent. Therefore ↑A 6= W, that
is W\ ↑A 6= ∅. (IntEC) Assume (α, β) ∈ N E

i (Φ). Then there is EiA ∈ Φ such
that α =↑A and β = W\ ↑A. Since EiA → CiA ∈ Φ and Φ is closed under
derivation, CiA ∈ Φ. Thus (↑A,W\ ↑A) = (α, β) ∈ NC

i (Φ). 2

Similarly to the transformation described in [3,4], a bi-neighbourhood model
for ELG can be transformed into a neighbourhood model for it as follows (the
proof is easy by induction on A):

Proposition 2.3 (Model transformation) Let Mbi = 〈W,Nbi,V〉 be a bi-
neighbourhood model for ELG, and Mn = 〈W,Nn,V〉 be the neighbourhood
model defined by taking the same W and V and, for all w ∈ W,
Nn(w) = {γ ⊆ W | there is (α, β) ∈ Nb(w) such that α ⊆ γ ⊆ W \ β}.

Then, for every A ∈ LElg and every w ∈ W, Mn, w 
 A if and only if
Mbi, w 
 A.

As the above transformation shows, bi-neighbourhood models have in gen-
eral smaller functions than their equivalent neighbourhood models. The reason
is that every bi-neighbourhood pair (α, β) – whose elements can be thought of
as lower and upper bounds of neighbourhoods – might validate more than one
modal formula.

3 Hypersequent calculus
We now focus on proof theory. To our knowledge, the only proof-theoretic
investigation of Elgesem’s logic is carried on in [9], where a cut-free sequent
calculus is defined. That calculus provides a decision procedure for Elgesem’s
logic, but has no link with the semantics.

We propose here a hypersequent calculus (see [1]) for Elgesem’s logic, in
the same style of calculi for basic non-normal modal logics presented in [3].
A hypersequent can be loosely interpreted as a disjunction of sequents. The
hypersequents considered in this article rely on an additional structure, called
blocks. A block is used to collect E- and C-formulas: more precisely it rep-
resents a conjunction of formulas under the scope of the same E or C. Since
neither E, nor C distribute over conjunction, blocks are not an abbreviation,
they are a proper structural construct, and specific structural rules of the calcu-
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lus handle them. Blocks within hypersequents are primarily needed for building
countermodels of non-derivable formulas: as we will see, they are used to de-
fine bi-neighbourhood pairs. Blocks also have two other advantages: by using
blocks we can encode in a clean (close to the axiomatisation) and analytic way
the relation between the modalities E and C; in addition the rules governing
the modalities E and C are independent one of the other, so that the two E
and C-fragments are separated, and the interaction between the two modali-
ties is captured just by a structural rule on blocks. We consider the following
definitions:
Definition 3.1 (Block, sequent, hypersequent) A block is a structure
〈Σ〉Ei or 〈Σ〉Ci , where i is an agent, and Σ is a multiset of formulas of LElg. A
sequent is a pair Γ⇒ ∆, where Γ is a multiset of formulas and blocks, and ∆ is
a multiset of formulas. We sometimes consider set(Γ), the support of a multiset
Γ, i.e., the set of its elements disregarding multiplicities. A hypersequent is a
multiset S1 | ... | Sn, where S1, ..., Sn are sequents. S1, ..., Sn are called the
components of the hypersequent.
Definition 3.2 (Formula interpretation) Single sequents are interpreted
as formulas of the logic as follows:

i(A1, ..., An, 〈Σ1〉Ea1
, ..., 〈Σm〉Eam

, 〈Π1〉Cb1
, ..., 〈Πk〉Cbk

⇒ B1, ..., B`)
=∧

i≤n Ai ∧
∧

j≤m Eaj

∧
Σj ∧

∧
s≤k Cas

∧
Πs →

∨
t≤` Bt.

Definition 3.3 (Semantic interpretation) We say that a sequent S is valid
in a bi-neighbourhood model M, denoted M |= S, if for all w ∈ M, M, w 

i(S). We say that a hypersequent H is valid inM, denotedM |= H, ifM |= S
for some S ∈ H.

The rules of the hypersequent calculus HSELG are presented in Fig. 2.
They are expressed in the cumulative version: the principal formulas or blocks
are copied into the premiss(es). This allows us to extract a countermodel
from a single saturated hypersequent. The propositional rules are just the
hypersequent versions of the ordinary corresponding sequent rules (we omit
the rules for ¬, ∨, →, which are standard). As usual, initial sequents init are
restricted to propositional variables, but it is easy to see that G | A,Γ⇒ ∆, A is
derivable for every A. Similarly to propositional connectives, E- and C-formulas
are handled by separate left and right rules. The rules RE and RC have multiple
premisses, but their number is fixed by the cardinality of the principal blocks
〈Σ〉Ei and 〈Σ〉Ci . For every axiom of ELG there is a corresponding rule in the
calculus. Blocks have a central role in all modal rules. Observe in particular
that E-blocks can be merged by means of the rule CE, but there is no analogous
rule for C-blocks. However, once complex E-blocks are created, they can be
converted into C-blocks by means of the rule IntEC. In Fig. 3 we show two
examples of derivation in HSELG.
Proposition 3.4 (Soundness) If H is derivable in HSELG, then it is valid
in all bi-neighbourhood models for ELG.
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init
G | Γ, p ⇒ p,∆ L⊥

G | Γ,⊥ ⇒ ∆ R>
G | Γ ⇒ >,∆

G | Γ, A ∧B, A, B ⇒ ∆
L∧

G | Γ, A ∧B ⇒ ∆
G | Γ⇒ A, A ∧B, ∆ G | Γ⇒ B, A ∧B, ∆

R∧
G | Γ⇒ A ∧B, ∆

G | Γ,EiA, 〈A〉Ei ⇒ ∆
LE

G | Γ,EiA ⇒ ∆
G | Γ,CiA, 〈A〉Ci ⇒ ∆

LC
G | Γ,CiA ⇒ ∆

G | Γ, 〈Σ〉Ei , 〈Σ〉Ci ⇒ ∆
IntEC

G | Γ, 〈Σ〉Ei ⇒ ∆

G | Γ, 〈Σ〉Ei ⇒ EiA,∆ | Σ ⇒ A {G | Γ, 〈Σ〉Ei ⇒ EiA,∆ | A ⇒ B}B∈ΣRE
G | Γ, 〈Σ〉Ei ⇒ EiA,∆

G | Γ, 〈Σ〉Ci ⇒ CiA,∆ | Σ ⇒ A {G | Γ, 〈Σ〉Ci ⇒ CiA,∆ | A ⇒ B}B∈ΣRC
G | Γ, 〈Σ〉Ci ⇒ CiA,∆

G | Γ, 〈Σ〉Ei , 〈Π〉Ei , 〈Σ,Π〉Ei ⇒ ∆
CE

G | Γ, 〈Σ〉Ei , 〈Π〉Ei ⇒ ∆
G | Γ, 〈Σ〉Ei ,Σ ⇒ ∆

TE
G | Γ, 〈Σ〉Ei ⇒ ∆

{G | Γ, 〈Σ〉Ci ⇒ ∆ | ⇒ B}B∈ΣQC
G | Γ, 〈Σ〉Ci ⇒ ∆

G | Γ, 〈Σ〉Ci ⇒ ∆ | Σ ⇒
PC

G | Γ, 〈Σ〉Ci ⇒ ∆

Fig. 2. The calculus HSELG.

EiA, 〈A〉Ei , 〈A〉Ci ⇒ CiA | A ⇒ A EiA, 〈A〉Ei , 〈A〉Ci ⇒ CiA | A ⇒ A
RC

EiA, 〈A〉Ei , 〈A〉Ci ⇒ CiA IntEC
EiA, 〈A〉Ei ⇒ CiA LEEiA ⇒ CiA

..., 〈A,B〉Ei ⇒ Ei(A ∧B) | A,B ⇒ A ∧B ... | A ∧B ⇒ A ... | A ∧B ⇒ B
REEiA ∧ EiB,EiA,EiB, 〈A〉Ei , 〈B〉Ei , 〈A,B〉Ei ⇒ Ei(A ∧B)

CEEiA ∧ EiB,EiA,EiB, 〈A〉Ei , 〈B〉Ei ⇒ Ei(A ∧B)
LEEiA ∧ EiB,EiA,EiB, 〈A〉Ei ⇒ Ei(A ∧B)

LEEiA ∧ EiB,EiA,EiB ⇒ Ei(A ∧B)
L∧EiA ∧ EiB ⇒ Ei(A ∧B)

Fig. 3. Derivations of axioms IntEC and CE in HSELG.

Proof. As usual, we have to show that the initial sequents are valid, and that
whenever the premiss(es) of a rule are valid, so is the conclusion. We show the
following illustrative cases.

(RE) AssumeM |= G | Γ, 〈Σ〉Ei ⇒ EiA,∆ | Σ⇒ A andM |= G | Γ, 〈Σ〉Ei ⇒
EiA,∆ | A ⇒ B for all B ∈ Σ. Then (i) M |= G, or (ii) M |= Γ, 〈Σ〉Ei ⇒
EiA,∆, or (iii)M |= Σ ⇒ A andM |= A ⇒ B for all B ∈ Σ. If (i) or (ii) we
are done. If (iii), then M |=

∧
Σ → A and M |= A → B for all B ∈ Σ, that
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isM |=
∧

Σ↔ A. Since REE is valid,M |= Ei

∧
Σ→ EiA = i(〈Σ〉Ei ⇒ EiA).

ThusM |= Γ, 〈Σ〉Ei ⇒ EiA,∆.
(IntEC) Assume M |= G | Γ, 〈Σ〉Ei , 〈Σ〉Ci ⇒ ∆. Then M |= G or M |=

Γ, 〈Σ〉Ei , 〈Σ〉Ci ⇒ ∆. In the first case we are done. In the second case, M |=
i(Γ, 〈Σ〉Ei , 〈Σ〉Ci ⇒ ∆), which is equivalent to Ei

∧
Σ ∧ Ci

∧
Σ→ i(Γ⇒ ∆). By

the validity of axiom IntEC, this is in turn equivalent to Ei

∧
Σ → i(Γ ⇒ ∆).

ThereforeM |= i(Γ, 〈Σ〉Ei ⇒ ∆). 2

We now investigate the structural properties of our calculus, and show that
it is complete with respect to the axiomatisation. A purely syntactic complete-
ness proof is significant because it is independent from the choice of any specific
semantics. As usual, this proof requires to show the admissibility of the cut
rule, that we formulate as follows:

G | Γ⇒ ∆, A G | A,Γ⇒ ∆
cut

G | Γ⇒ ∆
This means that whenever the premisses of cut are derivable, the conclusion
is also derivable. In turn, admissibility of cut depends upon the admissibility
of the structural rules of weakening and contraction, that in the hypersequent
framework must be formulated both in their internal and in their external
variants as follows:

Proposition 3.5 (Admissibility of structural rules) The following rules
are admissible in HSELG, where φ is any formula A or block 〈Σ〉Ei or 〈Σ〉Ci :

G | Γ ⇒ ∆
Lwk

G | φ,Γ ⇒ ∆
G | φ, φ,Γ ⇒ ∆

Lctr
G | φ,Γ ⇒ ∆

G | 〈A,A,Σ〉,Γ ⇒ ∆
Bctr

G | 〈A,Σ〉,Γ ⇒ ∆

G | Γ ⇒ ∆
Rwk

G | Γ ⇒ ∆, A
G | Γ ⇒ ∆, A,A

Rctr
G | Γ ⇒ ∆, A

GEwk
G | Γ ⇒ ∆

G | Γ ⇒ ∆ | Γ ⇒ ∆
Ectr

G | Γ ⇒ ∆

The proof of admissibility of weakening and contraction is standard by
induction on the derivation of the premisses. Observe that as an immediate
consequence of the admissibility of weakening all rules are invertible, which
means that whenever the conclusion of a rule is derivable, so are the premisses.
This is important because if a formula is derivable we get a derivation no matter
the order in which the rules are applied (see Sec. 4).

By contrast, the proof of admissibility of cut is a bit more intricate and
deserves more attention. We shall prove simultaneously the admissibility of
cut and of the following rule sub, which states that a formula A inside one or
more blocks can be replaced by any equivalent set of formulas Σ:

G | Σ⇒ A {G | A⇒ B}B∈Σ G |
−−−−−−→
〈An,Π〉Ei ,

−−−−−−→
〈Am,Ω〉Cj ,Γ⇒ ∆

sub
G |
−−−−−→
〈Σn,Π〉Ei ,

−−−−−−→
〈Σm,Ω〉Cj ,Γ⇒ ∆

where for instance
−−−−−−→
〈An,Π〉Ei stays for 〈An1 ,Π1〉Ei1

, ..., 〈Ank ,Πk〉Eik
, and An` is a
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compact way to denote n` occurrences of A. In the proof we use the following
definition of weight of formulas and blocks.
Definition 3.6 (Weight of formulas and blocks) The weight of formu-
las and blocks is recursively defined as follows: w(⊥) = w(>) = w(p) = 0;
w(A ∧ B) = w(A ∨ B) = w(A → B) = w(A) + w(B) + 1; w(〈A1, ..., Ak〉Ei ) =
w(〈A1, ..., Ak〉Cj ) = max1≤n≤k{w(An)}+ 1, w(EiA) = w(CiA) = w(A) + 2.
Theorem 3.7 (Cut elimination) The rules cut and sub are admissible in
HSELG.
Sketch of Proof. Let Cut(c, h) mean that all applications of cut of height h
on a cut formula of weight c are admissible, and Sub(c) mean that all appli-
cations of sub where A has weight c are admissible. Then the theorem is a
consequence of the following claims: (A) ∀c.Cut(c, 0); (B) ∀h.Cut(0, h); (C)
∀c.(∀h.Cut(c, h) → Sub(c)); (D) ∀c.∀h. ((∀c′ < c.(Sub(c′) ∧ ∀h′.Cut(c′, h′)) ∧
∀h′′ < h.Cut(c, h′′))→ Cut(c, h)). The proof is in the Appendix. 2

As a consequence of admissibility of cut we can prove the following com-
pleteness theorem.
Theorem 3.8 (Axiomatic completeness) If A is derivable in ELG, then
⇒ A is derivable in HSELG.
Proof. All modal axioms and rules of ELG are derivable in HSELG. As
examples, in Fig. 3 we have shown the derivations of axioms IntEC and CE.
Moreover, the rule REE (and analogously the rule REC) is derived as follows:

A ⇒ BEwk
EiA, 〈A〉Ei ⇒ EiB | A ⇒ B

B ⇒ A Ewk
EiA, 〈A〉Ei ⇒ EiB | B ⇒ A

RE
EiA, 〈A〉Ei ⇒ EiB LEEiA ⇒ EiB

The derivation contains applications of Ewk, which has been proved admissible.
Finally, Modus Ponens is simulated by cut, which has been proved admissible,
in the usual way. 2

As mentioned, hypersequents are not strictly necessary for making deriva-
tions, and in particular one can show that a hypersequent is derivable in HSELG
if and only if one of its components is derivable. However, the use of hyper-
sequents allows us to obtain a calculus where all rules are invertible, which
entails that the order of rule applications does not matter: essentially, modulo
the order of rule applications, every formula has a single derivation, or a single
failed proof, whence in particular proof search does not require backtracking.
Moreover, hypersequents are crucial for a direct computation of countermod-
els from every single unprovable hypersequent occurring as a leaf of a failed
derivation. We shall see all this in the next section.

4 Proof search and countermodel extraction
In this section, we define a procedure for checking the validity/derivability of
formulas in Elgesem’s logic by means of our hypersequent calculus. The pro-
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cedure is based on a simple root-first proof search strategy. We show that the
strategy always terminates and constructs a derivation for every valid formula.
Moreover, we show that whenever the proof fails it possible to directly extract
a countermodel of the non-valid formula. The strategy is based on the notion
of saturation. Intuitively, a saturated hypersequent is such that the backward
application of any rule to it cannot add any information, in the sense that one
of the premisses of the rule is already included in the hypersequent.
Definition 4.1 (Saturated hypersequent) Let H = Γ1 ⇒ ∆1 | ... | Γk ⇒
∆k be a hypersequent occurring in a proof for H ′. The saturation conditions
associated to each application of a rule of HSELG are as follows:
• Unprovability: (init) Γn ∩∆n = ∅. (⊥L) ⊥ /∈ Γn. (>R) > /∈ ∆n.
• Propositional rules: (∧L) If A ∧ B ∈ Γn, then A ∈ Γn and B ∈ Γn. (∧R) If
A ∧B ∈ ∆n, then A ∈ ∆n or B ∈ ∆n. Analogous for the rules for ¬, ∨, →.

• Modal rules: (LE) If EiA ∈ Γn, then 〈A〉Ei ∈ Γn. (RE) If Γ, 〈Σ〉Ei ⇒ EiB,∆
is in H, then there is Γ′,Σ⇒ B,∆′ in H or there is Γ′, B ⇒ A,∆′ in H for
some A ∈ Σ. (LC) and (RC) are analogous. (CE) If 〈Σ〉Ei , 〈Π〉Ei ∈ Γn, then
there is 〈Ω〉Ei ∈ Γn such that set(Σ,Π) = set(Ω). (TE) If 〈Σ〉Ei ∈ Γn, then
set(Σ) ⊆ Γn. (QC) If Γ, 〈Σ〉Ci ⇒ ∆ is in H, then there is Γ′ ⇒ B,∆′ in H for
some B ∈ Σ. (PC) If Γ, 〈Σ〉Ci ⇒ ∆ is in H, then there is Γ′ ⇒ ∆′ in H such
that set(Σ) ⊆ Γ′. (IntEC) If 〈Σ〉Ei ∈ Γn, then there is 〈Ω〉Ci ∈ Γn such that
set(Σ) = set(Ω).

We say that H is saturated with respect to an application of a rule R if it
satisfies the corresponding saturation condition (R) for that particular rule
application, and that it is saturated with respect to HSELG if it is saturated
with respect to every possible application of any rule of HSELG.

The proof search strategy is simple: (i) do not apply any rule to initial se-
quents, and (ii) do not apply a rule to a hypersequent which is already saturated
with respect to that particular application of that rule.

The strategy essentially amounts to avoiding applications of rules that do
not add any additional information to the hypersequents. We can prove that
this strategy leads to a terminating proof search algorithm.
Proposition 4.2 (Termination of proof search) Every branch of a proof
of a hypersequent H built in accordance with the strategy is finite. Thus, the
proof search procedure for H always terminates. Moreover, every branch ends
either with an initial hypersequent or a saturated one.
Proof. Let P be a proof of H. Then all formulas occurring in P (both in-
side and outside blocks) are subformulas of formulas of H, so they are finitely
many. Moreover, saturation conditions prevent duplications of the same formu-
las (both inside and outside blocks) and same blocks. Therefore every branch
of P can contain only finitely many hypersequents. 2

Hypersequents occurring in a proof of H can be exponentially large with
respect to the size of H. This is due to the presence of the rule CE that,
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given n formulas EiA1, . . . , EiAn, allows one to build a block for every subset
of {A1, ..., An}. In this respect, our decision procedure does not match the
PSPACE complexity upper bound established for Elgesem’s logic by Schröder
and Pattinson [10] and Troquard [11].

An optimal calculus could be obtained either by considering the sequent
calculus in [9], or (similarly to [3]) by reformulating the rules in Fig. 2 in such
a way that the principal formulas are not copied into the premisses. However,
in this way we would lose the invertibility of the rules, whence the possibility
to directly extract countermodels from single failed proofs. The situation is
analogous to the one of modal logic K: while a PSPACE complexity upper
bound can be obtain with the sequent calculus, the same is not possible with a
calculus with only invertible rules allowing for direct countermodel extraction
of non-valid formulas. This essentially shows the existence of a necessary trade-
off in the logic ELG between the optimal complexity of the calculus and the
possibility to directly extract countermodels from failed proofs.

We now show how to directly build a countermodel in the bi-neighbourhood
semantics from a saturated hypersequent.

Definition 4.3 (Countermodel construction) Let H be a saturated hy-
persequent occurring in a proof for H ′. Moreover, let e : N −→ H be
an enumeration of the components of H. Given e, we can write H as
Γ1 ⇒ ∆1 | ... | Γk ⇒ ∆k. The modelM = 〈W,N ,V〉 is defined as follows:
• W = {n | Γn ⇒ ∆n ∈ H}.
• V(p) = {n | p ∈ Γn}.
• For every block 〈Σ〉Ei or 〈Σ〉Ci occurring in a component Γm ⇒ ∆m of H,

Σ+ = {n ∈ W | set(Σ) ⊆ Γn} and Σ− = {n ∈ W | Σ ∩∆n 6= ∅}.
• For every i ∈ A and every n ∈ W,
N E

i (n) = {(Σ+,Σ−) | 〈Σ〉Ei ∈ Γn} and NC
i (n) = {(Σ+,Σ−) | 〈Σ〉Ci ∈ Γn}.

Lemma 4.4 Let M be defined as in Def. 4.3. Then for every A, 〈Σ〉Ei , 〈Π〉Cj
and every n ∈ W, we have: If A ∈ Γn, then n 
 A; if 〈Σ〉Ei ∈ Γn, then
n 
 Ei

∧
Σ; if 〈Π〉Cj ∈ Γn, then n 
 Cj

∧
Π; and if A ∈ ∆n, then n 6
 A.

Moreover,M is a bi-neighbourhood model for ELG.

Proof. The first claim is proved by mutual induction on A and 〈Σ〉Ei , 〈Σ〉Ci .
We only consider the inductive cases of modal formulas and blocks.

(〈Σ〉Ei ∈ Γn) By definition, (Σ+,Σ−) ∈ N E
i (n). We show that Σ+ ⊆ J

∧
ΣK

and Σ− ⊆ J¬
∧

ΣK, which implies n 
 Ei

∧
Σ. If m ∈ Σ+, then set(Σ) ⊆ Γm.

By i.h. m 
 A for all A ∈ Σ, then m 

∧

Σ. If m ∈ Σ−, then there is
B ∈ Σ ∩∆m. By i.h. m 6
 B, then m 6


∧
Σ.

(EiB ∈ Γn) By saturation of rule LE, 〈B〉Ei ∈ Γn. Then by i.h. n 
 EiB.
(EiB ∈ ∆n) Assume (α, β) ∈ N E

i (n). Then there is 〈Σ〉Ei ∈ Γn such that
Σ+ = α and Σ− = β. By saturation of rule RE, there is m ∈ W such that
Σ ⊆ Γm and B ∈ ∆m, or there is m ∈ W such that Σ ∩∆m 6= ∅ and B ∈ Γm.
In the first case, m ∈ Σ+ = α and by i.h. m 6
 B, thus α 6⊆ JBK. In the second
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case, m ∈ Σ− = β and by i.h. m 
 B, thus β 6⊆ J¬BK. Therefore n 6
 EiB.
For blocks 〈Σ〉Ci and formulas CiB the proof is analogous. Now we prove

thatM is a model for ELG.
(CE) Assume that (α, β), (γ, δ) ∈ N E

i (n). Then there are 〈Σ〉Ei , 〈Π〉Ei ∈ Γn

such that Σ+ = α, Σ− = β, Π+ = γ and Π− = δ. By saturation of rule CE,
there is 〈Ω〉 ∈ Γn such that set(Ω) = set(Σ,Π), thus (Ω+,Ω−) ∈ N E

i (n). We
show that (i) Ω+ = α ∩ γ and (ii) Ω− = β ∪ δ. (i) m ∈ Ω+ iff set(Ω) =
set(Σ,Π) ⊆ Γm iff set(Σ) ⊆ Γm and set(Π) ⊆ Γm iff m ∈ Σ+ = α and m ∈
Π+ = γ iff m ∈ α ∩ γ. (ii) m ∈ Ω− iff Ω ∩ ∆m 6= ∅ iff Σ,Π ∩ ∆m 6= ∅ iff
Σ ∩∆m 6= ∅ or Π ∩∆m 6= ∅ iff m ∈ Σ− = β or m ∈ Π− = δ iff m ∈ β ∪ δ.

(IntEC, TE) If (α, β) ∈ N E
i (n), then there is 〈Σ〉Ei ∈ Γn such that Σ+ = α and

Σ− = β. By saturation of rule TE, set(Σ) ⊆ Γn, then n ∈ Σ+ = α. Moreover,
by saturation of rule IntEC, then there is 〈Ω〉Ci ∈ Γn such that set(Σ) = set(Ω).
Then (Ω+,Ω−) = (Σ+,Σ−) = (α, β) ∈ NC

i (n).
(PC, QC) If (α, β) ∈ NC

i (n), then there is 〈Σ〉Ci ∈ Γn such that Σ+ = α and
Σ− = β. By saturation of rule PC, there is m ∈ W such that set(Σ) ⊆ Γm.
Then m ∈ Σ+ = α, that is α 6= ∅. Moreover, by saturation of rule QC, there is
` ∈ W such that Σ ∩∆` 6= ∅. Then ` ∈ Σ− = β, that is β 6= ∅. 2

Observe that since all rules are cumulative, the countermodelM ofH is also
a countermodel of the root hypersequent H ′. Then for every hypersequent we
either get a derivation (if the hypersequent is valid) or obtain a countermodel.
This entails the following theorem.

Theorem 4.5 (Semantic completeness) If H is valid in all bi-
neighbourhood models for ELG, then it is derivable in HSELG.

The proof search procedure for the calculus HSELG can be used to au-
tomatically and constructively check the validity/derivability of formulas in
Elgesem logic. For every formula, the proof search procedure either provides a
derivation if the formula is valid, or returns a countermodel if it is not.

Example 4.6 (Failure of delegation) The treatment of delegation repre-
sents a main difference between Elgesem’s account of agency and other ac-
counts, such as for instance the one formalised by STIT logics. It is explicitly
rejected by Elgesem [5]: “a person is normally not considered the agent of some
consequence of his action if another agent interferes in the causal chain.” For
instance, we can say that having the car repaired is not the same as repairing
the car by yourself. Let us represent Anna by a, Beatrice by b, and “repair-
ing the car” by p. Then EaEbp → Eap expresses the sentence “If Anna gets
Beatrice to repair her car, then Anna repairs her car”. By using our calcu-
lus we can automatically obtain a countermodel of EaEbp → Eap. First, in
Fig. 4 we find a failed proof of EaEbp→ Eap in HSELG. Then we consider the
following enumeration of the components of the saturated hypersequent: 1 7→
〈Ebp〉Ea, 〈p〉Eb , 〈Ebp〉Ca , 〈p〉Cb , p,Ebp,EaEbp ⇒ Eap; 2 7→ p ⇒ Ebp; and 3 7→ ⇒ p.
We obtain the following countermodels:
Bi-neighbourhood countermodel: By applying the construction in Def. 4.3 we
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init
... | 〈p〉Eb , p,Ebp⇒ p

TE
... | 〈p〉Eb ,Ebp⇒ p

LE
... | Ebp⇒ p

saturated
〈Ebp〉Ea, 〈p〉Eb , 〈Ebp〉Ca , 〈p〉Cb , p,Ebp,EaEbp⇒ Eap | p⇒ Ebp | ⇒ p

QC〈Ebp〉Ea, 〈p〉Eb , 〈Ebp〉Ca , 〈p〉Cb , p,Ebp,EaEbp⇒ Eap | p⇒ Ebp IntEC〈Ebp〉Ea, 〈p〉Eb , 〈Ebp〉Ca , p,Ebp,EaEbp⇒ Eap | p⇒ Ebp IntEC〈Ebp〉Ea, 〈p〉Eb , p,Ebp,EaEbp⇒ Eap | p⇒ Ebp TE〈Ebp〉Ea, 〈p〉Eb ,Ebp,EaEbp⇒ Eap | p⇒ Ebp LE〈Ebp〉Ea,Ebp,EaEbp⇒ Eap | p⇒ Ebp TE〈Ebp〉Ea,EaEbp⇒ Eap | p⇒ Ebp RE〈Ebp〉Ea,EaEbp⇒ Eap LEEaEbp⇒ Eap

Fig. 4. Failed proof in HSELG.

REE
A↔ B

EgA↔ EgB
REC

A↔ B
CgA↔ CgB

CE EgA ∧ EgB → Eg(A ∧B) QC ¬Cg>
TE EgA→ A PC ¬Cg⊥
Int1EC EgA→ CgA FC ¬C∅A
Int2EC Eg1A ∧ Eg2B → Cg1∪g2(A ∧B)

Fig. 5. Modal axioms and rules of Troquard’s logic COAL.

obtain the bi-neighbourhood countermodelM = 〈W,N E
i ,NC

i ,V〉, where W =
{1, 2, 3}; V(p) = {1, 2}; N E

a (1) = NC
a (1) = {({1}, {2})} – since N E

a (1) =
NC

a (1) = {(Ebp
+,Ebp

−)}, Ebp
+ = {1}, and Ebp

− = {2} –; N E
b (1) = NC

b (1) =
{({1, 2}, {3})} – sinceN E

b (1) = NC
b (1) = {(p+, p−)}, p+ = {1, 2}, and p− = {3}

–; N E
i (n) = NC

i (n) = ∅ for i = a, b and n = 2, 3.
Neighbourhood countermodel: By applying the transformation in Prop. 2.3 we
obtain the neighbourhood countermodel M = 〈W,N E

i ,NC
i ,V〉, where W =

{1, 2, 3}; V(p) = {1, 2}; N E
a (1) = NC

a (1) = {{1}, {1, 3}}; N E
b (1) = NC

b (1) =
{{1, 2}}; and N E

i (n) = NC
i (n) = ∅ for i = a, b and n = 2, 3.

5 Extension to Troquard’s coalition logic
A coalition version of Elgesem’s logic is proposed by Troquard [11]. In Tro-
quard’s logic, called COAL, single agents are replaced by groups of agents.
The aim is to represent what agents do and can do when acting in coalitions.
The logic COAL is defined by extending classical propositional logic with the
modal axioms and rules in Fig. 5.

Apart from FC and Int2EC, the axioms and rules of COAL are just the
coalition versions of the corresponding ones in ELG, with agents i replaced
by groups g. The peculiar aspects of group agency are represented in COAL
by the axioms FC and Int2EC. In particular, the axiom FC expresses that the
empty group cannot realise anything, whereas the axiom Int2EC says that if a
group realises A and another group realises B, then by joining their forces
they could realise both A and B. Observe that the axiom Int1EC is derivable
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from Int2EC. Nevertheless we keep it in the axiomatisation, as in [11], to keep
the correspondence with the calculus where a specific rule for Int1EC is needed
to ensure the admissibility of contraction. As for ELG, we can define bi-
neighbourhood models for COAL.
Definition 5.1 A bi-neighbourhood model for COAL is a tuple M =
〈W,N E

g ,NC
g ,V〉, where in particular for every group of agents g, N E

g and NC
g

are two bi-neighbourhood functions satisfying the conditions (CE), (TE), (QC),
and (PC) of Def. 2.1 (but with N E and NC indexed by g instead of i), and also
the following additional conditions:

(FC) NC
∅ (w) = ∅.

(Int2EC) If (α, β) ∈ N E
g1

(w) and (γ, δ) ∈ N E
g2

(w), then
(α ∩ γ, β ∪ δ) ∈ NC

g1∪g2
(w).

The forcing relation 
 is defined as in Def. 2.1, in particular:
M, w 
 EgA iff there is (α, β) ∈ N E

g (w) s.t.
for all v ∈ α,M, v 
 A, and for all u ∈ β,M, u 6
 A.

M, w 
 CgA iff there is (α, β) ∈ NC
g (w) s.t.

for all v ∈ α,M, v 
 A, and for all u ∈ β,M, u 6
 A.
Similarly to logic ELG we can prove the following completeness theorem.

Theorem 5.2 A is derivable in COAL if and only if it is valid in all bi-
neighbourhood models for COAL.

Moreover, by a transformation analogous to the one in Prop. 2.3 we can
convert the bi-neighbourhood models for COAL into equivalent neighbour-
hood models for it, as they are defined in [11]: it suffices to assign to the
Eg-neighbourhood (resp. the Cg-neighbourhood) of each world w, the subsets
γ such that α ⊆ γ ⊆ W \ β and (α, β) ∈ N E

g (w) (resp. (α, β) ∈ NC
g (w)).

The hypersequent calculus HSCOAL is defined by the propositional rules in
Fig. 2 and the modal rules in Fig. 6. As before, each axiom has a corresponding
rule in the calculus. An example of derivation is the following.

..., 〈A,B〉Cg1∪g2
⇒ Cg1∪g2(A ∧B) | A,B ⇒ A ∧B ... | A ∧B ⇒ A ... | A ∧B ⇒ B

RCEg1A ∧ Eg2B,Eg1A,Eg2B, 〈A〉Eg1
, 〈B〉Eg2

, 〈A,B〉Cg1∪g2
⇒ Cg1∪g2(A ∧B)

Int2
ECEg1A ∧ Eg2B,Eg1A,Eg2B, 〈A〉Eg1

, 〈B〉Eg2
⇒ Cg1∪g2(A ∧B)

LE × 2
Eg1A ∧ Eg2B,Eg1A,Eg2B ⇒ Cg1∪g2(A ∧B)

L∧Eg1A ∧ Eg2B ⇒ Cg1∪g2(A ∧B)

By extending the proofs for HSELG we can obtain the following theorem.

Theorem 5.3 All structural rules including cut are admissible in HSCOAL.
Moreover, HSCOAL is axiomatically complete with respect to COAL, that is,
if A is derivable in COAL, then ⇒ A is derivable in HSCOAL.

Termination of proof search can be obtained by considering a proof search
strategy analogous to the one in HSELG. We only need to consider the fol-
lowing two additional saturation conditions: (FC) 〈Σ〉C∅ /∈ Γn, and (Int2

EC) if
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G | Γ,EgA, 〈A〉Eg ⇒ ∆
LE

G | Γ,EgA ⇒ ∆
G | Γ,CgA, 〈A〉Cg ⇒ ∆

LC
G | Γ,CgA ⇒ ∆

G | Γ, 〈Σ〉Eg , 〈Σ〉Cg ⇒ ∆
Int1

EC
G | Γ, 〈Σ〉Eg ⇒ ∆

G | Γ, 〈Σ〉Eg ⇒ EgA,∆ | Σ ⇒ A {G | Γ, 〈Σ〉Eg ⇒ EgA,∆ | A ⇒ B}B∈Σ
RE

G | Γ, 〈Σ〉Eg ⇒ EgA,∆

G | Γ, 〈Σ〉Cg ⇒ CgA,∆ | Σ ⇒ A {G | Γ, 〈Σ〉Cg ⇒ CgA,∆ | A ⇒ B}B∈Σ
RC

G | Γ, 〈Σ〉Cg ⇒ CgA,∆

G | Γ, 〈Σ〉Eg , 〈Π〉Eg , 〈Σ,Π〉Eg ⇒ ∆
CE

G | Γ, 〈Σ〉Eg , 〈Π〉Eg ⇒ ∆
G | Γ, 〈Σ〉Eg ,Σ ⇒ ∆

TE
G | Γ, 〈Σ〉Eg ⇒ ∆

{G | Γ, 〈Σ〉Cg ⇒ ∆ | ⇒ B}B∈Σ
QC

G | Γ, 〈Σ〉Cg ⇒ ∆
G | Γ, 〈Σ〉Cg ⇒ ∆ | Σ ⇒

PC
G | Γ, 〈Σ〉Cg ⇒ ∆

FC
G | Γ, 〈Σ〉C∅ ⇒ ∆

G | Γ, 〈Σ〉Eg1 , 〈Π〉Eg2 , 〈Σ,Π〉Cg1∪g2 ⇒ ∆
Int2

EC
G | Γ, 〈Σ〉Eg1 , 〈Π〉Eg2 ⇒ ∆

Fig. 6. Modal rules of HSCOAL.

〈Σ〉Eg1
, 〈Π〉Eg2

∈ Γn, then 〈Ω〉Cg1∪g2
∈ Γn such that set(Ω) = set(Σ,Π). As for

HSELG we can prove that proof search always terminates, whence we obtain
a decision procedure for the logic COAL. Again, proof search is not optimal
since derivation can have an exponential size whereas the logic is in PSPACE,
as proved by Troquard [11].

We can also prove that the calculus is semantically complete. As before,
the proof consists in showing how to extract a countermodel of a non-derivable
hypersequent by means of the information provided by the failed proof.
Theorem 5.4 If H is valid in all bi-neighbourhood models for COAL, then it
is derivable in HSCOAL.
Proof. Given a saturated hypersequent H we define a modelM as in Def. 4.3
(replacing agents i with groups g). We can prove that formulas and blocks in the
left-hand side of the components are satisfied in the corresponding worlds, and
that formulas in the right-hand side are falsified, whenceM is a countermodel
of H. Moreover, we can prove thatM is a bi-neighbourhood model for COAL.
The proofs are as in Lemma 4.4. We only consider the following two conditions.

(Int2EC) Assume that (α, β) ∈ N E
g1

(n) and (γ, δ) ∈ N E
g2

(n). If (α, β) 6= (γ, δ)
or g1 6= g2, then there are 〈Σ〉Eg1

, 〈Π〉Eg2
∈ Γn such that Σ+ = α, Σ− = β,

Π+ = γ and Π− = δ. By saturation or rule Int2
EC, there is 〈Ω〉Cg1∪g2

∈ Γn

such that set(Ω) = set(Σ,Π), thus (Ω+,Ω−) ∈ NC
g1∪g2

(n), where, as shown in
the proof of Lemma 4.4 case (CE), Ω+ = α ∩ γ and Ω− = β ∪ δ. If instead
(α, β) = (γ, δ) and g1 = g2, then there is 〈Σ〉Eg1

∈ Γn such that Σ+ = α
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and Σ− = β. Then by saturation of rule IntEC there is 〈Ω〉Ci ∈ Γn such that
set(Σ) = set(Ω). Then (Ω+,Ω−) = (Σ+,Σ−) = (α, β) ∈ NC

i (n).
(FC) By saturation of FC there is no block 〈Σ〉C∅ ∈ Γn, then NC

∅ (n) = ∅. 2

We conclude this section by showing that coalition monotonicity is not valid
in COAL. We present the countermodel directly extracted from a failed proof.

Example 5.5 (No coalition monotonicity) We show that the formula
E{a}p→ E{a,b}p is not valid in COAL. A failed proof is as follows:

saturated
〈p〉E{a}, 〈p〉C{a}, p,E{a}p ⇒ E{a,b}p | ⇒ p

QC
〈p〉E{a}, 〈p〉C{a}, p,E{a}p ⇒ E{a,b}p

IntEC
〈p〉E{a}, p,E{a}p ⇒ E{a,b}p

TE
〈p〉E{a},E{a}p ⇒ E{a,b}p

LEE{a}p ⇒ E{a,b}p

Let 1 7→ 〈p〉Ea, 〈p〉Ca , p,E{a}p⇒ E{a,b}p, and 2 7→ ⇒ p. We obtain the following
countermodels:
Bi-neighbourhood countermodel: M = 〈W,N E

g ,NC
g ,V〉, where W = {1, 2};

V(p) = {1}; N E
{a}(1) = NC

{a}(1) = {(p+, p−)} = {({1}, {2})}; and N E
g (k) =

NC
g (k) = ∅ for g 6= {a} or k 6= 1.

Neighbourhood countermodel: M = 〈W,N E
g ,NC

g ,V〉, where W = {1, 2};
V(p) = {1}; N E

{a}(1) = NC
{a}(1) = {{1}}; and N E

g (k) = NC
g (k) = ∅ for g 6= {a}

or k 6= 1.

6 Conclusion
We have presented hypersequent calculi for Elgesem’s logic of agency and abil-
ity and its coalition extension proposed by Troquard. The calculi have good
structural properties, including the syntactical admissibility of cut. Further-
more, we have defined a terminating proof search strategy which ensures that
a derivation or a countermodel will be found for every formula. In particular,
in case of a failed proof it is possible to directly extract a countermodel of
the non-valid formula in the bi-neighbourhood semantics, whence by an easy
transformation in the standard neighbourhood semantics. All in all, the calculi
provide constructive decision procedures for the two logics.

Troquard has proposed several extensions of his coalition logic with further
principles for group agency, such as delegation and strict-joint agency, the
latter stating that if a group brings about that A, then any strict subgroup
of it cannot bring about that A. We plan to extend our calculi to cover also
these extensions, and possibly others. Moreover, our calculi are well-suited
for automatisation. We plan to implement them in order to realise the first
theorem provers for the logics of agency and ability.
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Appendix

Proof of Theorem 3.7. Recall that, for an application of cut, the cut formula
is the formula which is deleted by that application, while the cut height is the
sum of the heights of the derivations of the premisses of cut. We prove that:
(A) ∀c.Cut(c, 0). (B) ∀h.Cut(0, h). (C) ∀c.(∀h.Cut(c, h) → Sub(c)). (D)
∀c.∀h.((∀c′ < c.(Sub(c′) ∧ ∀h′.Cut(c′, h′)) ∧ ∀h′′ < h.Cut(c, h′′))→ Cut(c, h)).

(A) and (B) are trivial. (C) Assume ∀hCut(c, h). The proof is by induc-
tion on the height m of the derivation of G |

−−−−−−→
〈An,Π〉Ei ,

−−−−−−→
〈Am,Ω〉Cj ,Γ ⇒ ∆.

We only consider the case where m > 0 and at least one block among−−−−−−→
〈An,Π〉Ei ,

−−−−−−→
〈Am,Ω〉Cj is principal in the last rule application. We consider as

an example the case where the last rule applied is IntEC:
G | 〈Ank ,Πk〉Ei , 〈Ank ,Πk〉Ci ,Γ ⇒ ∆

IntEC
G | 〈Ank ,Πk〉Ei ,Γ ⇒ ∆

By applying the inductive hypothesis to the premiss we obtain G |
〈Σnk ,Πk〉Ei , 〈Σnk ,Πk〉Ci ,Γ⇒ ∆, then by IntEC we derive G | 〈Σnk ,Πk〉Ci ,Γ⇒ ∆.

(D) Assume ∀c′ < c. (Sub(c′) ∧ ∀h′. Cut(c′, h′)) and ∀h′′ < h.Cut(c, h′′).
We show that all applications of cut of height h on a cut formula of weight c
can be replaced by different applications of cut, either of smaller height or on
a cut formula of smaller weight. We only consider the cases where h, c > 0 and
the cut formula is EiB, principal in the derivation of both premisses of cut:

G | 〈Σ〉Ei , Γ⇒ ∆,EiB | Σ⇒ B... {G | 〈Σ〉Ei , Γ⇒ ∆,EiB | B ⇒ C}C∈Σ
RE

G | 〈Σ〉Ei , Γ⇒ ∆,EiB

G | 〈B〉,EiB, 〈Σ〉Ei , Γ⇒ ∆
LE

G | EiB, 〈Σ〉Ei , Γ⇒ ∆
cut

G | 〈Σ〉Ei , Γ⇒ ∆

The derivation is converted as follows, with several applications of cut of smaller
height and an admissible application of sub.

G | 〈Σ〉Ei , Γ⇒ ∆,EiB | Σ⇒ B

G | EiB, 〈Σ〉Ei , Γ⇒ ∆
Ewk

G | EiB, 〈Σ〉Ei , Γ⇒ ∆ | Σ⇒ B
cut

1© G | 〈Σ〉Ei , Γ⇒ ∆ | Σ⇒ B

G | 〈Σ〉Ei , Γ⇒ ∆,EiB
Lwk

G | 〈B〉Ei , 〈Σ〉Ei , Γ⇒ ∆,EiB G | 〈B〉,EiB, 〈Σ〉Ei , Γ⇒ ∆
cut

G | 〈B〉Ei , 〈Σ〉Ei , Γ⇒ ∆
Ewk

2© G | 〈Σ〉Ei , Γ⇒ ∆ | 〈B〉Ei , 〈Σ〉Ei , Γ⇒ ∆

1©
G | 〈Σ〉Ei ,Γ⇒ ∆,EiB | B ⇒ C

G | EiB, 〈Σ〉Ei ,Γ⇒ ∆
Ewk

G | EiB, 〈Σ〉Ei ,Γ⇒ ∆ | B ⇒ C{
cut

}
C∈ΣG | 〈Σ〉Ei ,Γ⇒ ∆ | B ⇒ C 2©

sub
G | 〈Σ〉Ei ,Γ⇒ ∆ | 〈Σ〉Ei , 〈Σ〉Ei ,Γ⇒ ∆

Lctr
G | 〈Σ〉Ei ,Γ⇒ ∆ | 〈Σ〉Ei ,Γ⇒ ∆

Ectr
G | 〈Σ〉Ei ,Γ⇒ ∆

2
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